ECG denoising and fiducial point extraction using an extended Kalman filtering framework with linear and nonlinear phase observations.
نویسندگان
چکیده
In this paper we propose an efficient method for denoising and extracting fiducial point (FP) of ECG signals. The method is based on a nonlinear dynamic model which uses Gaussian functions to model ECG waveforms. For estimating the model parameters, we use an extended Kalman filter (EKF). In this framework called EKF25, all the parameters of Gaussian functions as well as the ECG waveforms (P-wave, QRS complex and T-wave) in the ECG dynamical model, are considered as state variables. In this paper, the dynamic time warping method is used to estimate the nonlinear ECG phase observation. We compare this new approach with linear phase observation models. Using linear and nonlinear EKF25 for ECG denoising and nonlinear EKF25 for fiducial point extraction and ECG interval analysis are the main contributions of this paper. Performance comparison with other EKF-based techniques shows that the proposed method results in higher output SNR with an average SNR improvement of 12 dB for an input SNR of -8 dB. To evaluate the FP extraction performance, we compare the proposed method with a method based on partially collapsed Gibbs sampler and an established EKF-based method. The mean absolute error and the root mean square error of all FPs, across all databases are 14 ms and 22 ms, respectively, for our proposed method, with an advantage when using a nonlinear phase observation. These errors are significantly smaller than errors obtained with other methods. For ECG interval analysis, with an absolute mean error and a root mean square error of about 22 ms and 29 ms, the proposed method achieves better accuracy and smaller variability with respect to other methods.
منابع مشابه
On-Line Nonlinear Dynamic Data Reconciliation Using Extended Kalman Filtering: Application to a Distillation Column and a CSTR
Extended Kalman Filtering (EKF) is a nonlinear dynamic data reconciliation (NDDR) method. One of its main advantages is its suitability for on-line applications. This paper presents an on-line NDDR method using EKF. It is implemented for two case studies, temperature measurements of a distillation column and concentration measurements of a CSTR. In each time step, random numbers with zero m...
متن کاملFiducial points extraction and charactericwaves detection in ECG signal using a model-based bayesian framework
The automatic detection of Electrocardiogram (ECG) waves is important to cardiac disease diagnosis. A good performance of an automatic ECG analyzing system depends heavily upon the accurate and reliable detection of QRS complex, as well as P and T waves. In this paper, we propose an efficient method for extraction of characteristic points of ECG signal. The method is based on a nonlinear dynami...
متن کاملApplication of Dynamic Time Warping on Kalman Filtering Framework for Abnormal ECG Filtering
Existing nonlinear Bayesian filtering frameworks serve as an effective tool for the model-based filtering of noisy ECG recordings. However, since these methods are based on linear phase assumption, for some heart defects where abnormal waves only appear in certain cycles of the ECG, they are unable to simultaneously filter the normal and abnormal ECG segments. In this paper, a new method based ...
متن کاملSynthetic ECG generation and Bayesian filtering using a Gaussian wave-based dynamical model.
In this paper, we describe a Gaussian wave-based state space to model the temporal dynamics of electrocardiogram (ECG) signals. It is shown that this model may be effectively used for generating synthetic ECGs as well as separate characteristic waves (CWs) such as the atrial and ventricular complexes. The model uses separate state variables for each CW, i.e. P, QRS and T, and hence is capable o...
متن کاملECG biometric authentication based on non-fiducial approach using kernel methods
Identity recognition faces several challenges especially in extracting an individual's unique features from biometric modalities and pattern classifications. Electrocardiogram (ECG) waveforms, for instance, have unique identity properties for human recognition, and their signals are not periodic. At present, in order to generate a significant ECG feature set, nonfiducial methodologies based on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological measurement
دوره 37 2 شماره
صفحات -
تاریخ انتشار 2016